AI Studio

Predict

Mock AI models and datasets that will be used for risk forecasting and alert intelligence. No real patient data is processed in this MVP.

“High modern” preview
AI models
3
Forecasting, classification, detection
Datasets connected
4
Wearables, IMU, compliance, EHR
Predictions ready
1 pipeline
Risk forecast (7-day horizon)
Risk forecast (next 7 days)
Feature signals (mock)

What the model “pays attention to” for the current forecast.

SpO₂ variability
Increased variance contributes to higher risk.
+62%
Resting heart rate
Elevated baseline over last 72h.
+41%
Wear-time compliance
More gaps increase uncertainty and risk.
+33%
Sleep regularity
Stable sleep schedule reduces risk.
-28%
AI models
Deployed services powering predictions.
CarePulse Risk Forecaster
Risk forecastingv0.9.2
online
AUC
F1
MAE
6.8
Alert Classifier
Alert classificationv0.7.4
online
AUC
0.93
F1
0.86
MAE
Vitals Anomaly Detector
Anomaly detectionv0.6.1
shadow
AUC
0.9
F1
MAE
Datasets
Sources and schemas used by the AI pipeline.
Vitals • 1-min aggregates
Wearable • Updated Feb 10, 08:25 AM
ready
18M rowstimestampheartRatespo2temp+2 more
Falls • IMU events
IMU • Updated Feb 10, 08:11 AM
ready
64K rowstimestampaccelgyroimpact+1 more
Device compliance • wear time
Device telemetry • Updated Feb 10, 08:19 AM
syncing
3M rowstimestampbatterywornsignal+1 more
EHR snapshot • meds & conditions
EHR • Updated Feb 09, 11:40 PM
ready
13K rowspatientIdconditionsmedicationsrecentVisits